
Programmer as Artist

Essay for Creative Technologies and Art Practices 

Code: IS71018A

Phil Jones



Introduction

When I arrived on the course at Goldsmiths I brought with me an idea. I imagined a spectrum of 
“artistic software” at one end of which are generic tools: packages like Photoshop, flexible enough 
to allow an artist to produce almost any image, but inert, heavy, doing nothing until the user starts 
pushing with the mouse. At the other end of the spectrum are algorithmic art pieces where the 
programmer defines a system with a set of rules, and the viewer's role is passive : to watch the rules 
unfold and appreciate the results.

I was, I declared, interested in neither extreme of the spectrum, but in works somewhere in the 
middle: “sweet spots” where both program and “participant” are expected to be active. Where the 
participant is  “thrown”1 into the world of the software. We are, I thought, dynamical systems, at 
home in a changing world. And software which is too passive is unnatural and uncomfortable, while 
software that simply unfolds according to its own rules feels hermetically opaque. If the principle of 
its evolution is part of what makes a work interesting, then it must be perceptible in some sense. If 
the algorithm is not legible then at least it can be tangible and manipulable.

Hence I wanted to explore the space of pieces which recruit the participant as an active co-creator 
of the form of the work2.

I set out to create sketches with this quality, but too-rigid assumptions are soon challenged. When 
describing ideas for one recent work-in-progress : “Machine Gardens”, I found it hard to explain 
what I was aiming at except “it's a program which helps artists create mechanical systems” which 
elicited the response “well then, you need to find some real artists to test it with to see if it works for 
them”.

While that could be dismissed as a simple misunderstanding, it had a profound effect on my 
thinking. My struggle to describe the work, and the response, opened many questions about the role 
of computers as tools in art, software in art, and what kind of artist the programmer can or might 
aspire to be.

Does making a program to “help artists” imply that one is not an artist oneself? Must programs be 
either “tools” (means to an end) or “art works” (ends in themselves)? Can, for example, Kai 
Krause3, be an artist? 

Another point that has become clearer to me : my spectrum of software outlined above is a natural 
way for a programmer to look at things. Anyone making software must consider how its users will 
interact with it. And almost every software developer cares that the user's experience is good, which 
means finding the right balance between competing requirements such as ease of use, flexibility and 
completeness. 

By framing interactive art as the “problem” of finding the right compromise I was thinking like a 
developer. But that may not be how the visual artist coming to digitality thinks about interaction. A 
common response when I explain the above is to be asked what is wrong with being at one or other 
end of the spectrum?4

Now artists solve “plastic problems” of finding the right balances of form and colour and material 
all the time. What, perhaps, made my question strange was that I saw “interaction” itself as a kind 

1 “Thrown” in the Heideggerian sense which I take from Winograd and Flores. (Winograd, T., and F. Flores. 1986. 
Understanding Computers and Cognition. Norwood, NJ: Ablex. )

2 I am not saying here that the normal consumption of an art piece is merely passive. Of course there is active 
engagement : interpretation, looking from different angles, co-creation of meaning, selectivity of when and where 
the work is viewed, communal experience triggered by the work etc. I do, however, want to say that the active co-
creation of form in the art I'm talking about does differ in some significant way from all of these. 

3 A maker of Photoshop plugins (see http://en.wikipedia.org/wiki/Kai_Krause, retrieved 12 July, 2011)
4 Of course there's nothing wrong with being at either end of the spectrum if that's where you want to be.

http://en.wikipedia.org/wiki/Kai_Krause


of material to be explicitly shaped and worked with. And in this I started to see an answer to the 
question of what kind of artist a programmer might aspire to be.

The programmer is already, by inclination and training, a system builder. The programmer's 
material is “system dynamics” and her techniques are ways to describe and manipulate those 
dynamics.

The rest of this essay tries to throw more light on an artistic application of those facts by exploring 
analogies between programming and other arts. It is divided into two sections :

1) The Programmer's Material elaborates further on the kind of materials that the programmer 
perceives and works with.

2) System Builders invokes Clare Bishop's discussions of relational and collaborative arts and 
considers in the context of programmer art.

The Programmer's Material

What is the Programmer's Material? I'd argue that material is whatever is malleable or manipulable 
by the artist. For the painter, it is paint. For the potter clay. For the programmer it is code.

Analogies between code and artistic media are common. Ward Cunningham, the inventor of wiki, 
makes an explicit simile driven by malleability5 when discussing his “refactoring”6 practice : 

I like the notion of working the program, like an artist works a lump of clay. An artist wants to make a sculpture, but  
before she makes the sculpture, she just massages the clay. She starts towards making the sculpture, and sees what 
the clay wants to do. And the more she handles the clay, the more the clay tends to do what she wants … A 
development team works on a piece of code over several months. Initially, they make a piece of code, and it's a little 
stiff. It's small, but it's still stiff. Then they move the code, and it gets a little easier to move. 

To call code a “material” creates some difficulty because many words that we'd like to use to 
describe or explain become contentious. Isn't material meant to have “physicality”? What are the 
“plastic” or “formal” properties of code? 

Semiotician Kumiko Tanaka-Ishii7 elaborates. “Computer language” is a system of signs, much like 
human language. He uses painting and sculpture to illustrate the different varieties of sign : Ito 
Jakuchu's birds8 are literal representations, Magritte's bird-shaped hole9 represents a bird without 
showing it, Brancusi's Bird in Space10 abstracts out some general qualities of birds. Tanaka-Ishii 
finds all three kinds of representation occurring in a single line of code11:

int x = 32;

Here “32” is a literal number; the variable12 “x” is a symbol that can represent numbers even though 
it isn't a literal picture of one. And “int”, short for integer or “whole number”, is a type i.e. an 
abstraction which represents what is common to all whole numbers.

This is the material that the programmer needs to understand and manipulate : complexes of 
symbols of different kinds including those which represent generalisations about classes of things. 
In fact, it should be noted that inventing abstractions is at the heart of programmer practice and, as 
Malcolm McCullough points out, “the history of programming may be understood as largely a 
matter of increased abstraction”13 (This throws up an intriguing parallel with the history of painting. 

5 Interviewed on Artima : http://www.artima.com/intv/clay3.html, retrieved July 13, 2011
6 Reworking code without changing its behaviour. See Fowler, Martin, 1999, Refactoring : Improving the Design of 

Existing Code, Addison-Wesley Professional
7 Tanaka-Ishii, Kumiko, 2010, The Semiotics of Programming, Cambridge
8 See, for example, http://www.stolaf.edu/courses/2004sem2/Art/260/rocklin/essay.htm (retrieved July 13, 2011)
9 La Grande Famille, see http://www.serjacopo.com/MagrittePicta/Paint_001.html (retrieved July 13, 2011)
10 See http://en.wikipedia.org/wiki/Bird_in_Space (retrieved July 13, 2011)
11 This example is from The Semiotics of Programming, chapter 6 : The Statement x := x + 1
12 A kind of “box in memory” into which numbers and other data can be put.
13 Abstracting Craft, page 97

http://en.wikipedia.org/wiki/Bird_in_Space
http://www.serjacopo.com/MagrittePicta/Paint_001.html
http://www.stolaf.edu/courses/2004sem2/Art/260/rocklin/essay.htm
http://www.artima.com/intv/clay3.html


Like Mondrian evolving from reporting the tangled branches of trees to ever cleaner lines and 
colour patches14, the programmer evolves from individual variables containing each item of data, 
through classes and general-purpose collections, to higher-order functions and monads15.)

In his book, “The Craftsman”16, philosopher Richard Sennett talks about “material consciousness” 
that the crafter17 develops. This consciousness comes in three guises : a metamorphosis of the 
material itself, attempts at marking the material with some stamp to say “I made this”, and an 
anthropomorphism attributing human character to the work.

In code, metamorphosis includes the continual invention of new abstractions in programming 
languages.  Marking by commenting is common. And, despite attempts by some people to 
exterminate it18, anthropomorphism is alive and well.

From the growing craftsmanship of the programmer come the new abstractions. 

Malcolm McCullough, summarizing the history of symbolic notation19, draws attention to 
“generative structure” :

“[S]oftware design is a matter of defining an appropriate structure for serving a task or problem … Often the best 
way to do this is through manipulation. Generative structure is the beginnings of a medium largely because it invites 
manipulation … a structure has a feel based on internal laws and self-regulation, which we experience by working 
on it – through transformation. This is a fundamental idea behind any understanding of the computer as medium.”

He emphasizes structure, and its ally grammar, in the generation of new things, including art works. 
But having done so, he then then reintroduces the key virtue of craft as a balance : 

“Although it is important to respect generative structures we must also acknowledge that their power will be realised 
through the complementary role of personal sensibility.”

Here, for a moment, is a flash of the tradition of craft as humanist expression, the ethics of John 
Ruskin and William Morris, and rejection of the machine20. McCullough, though, is seeking a 
rapprochement. His book, “Abstracting Craft”, starts with the premise that the graphical user 
interface and the trope of direct manipulation of data has reintroduced hand / eye co-ordination in 
the use of computers and this is therefore an opportunity for the return of craft values of skill and 
workmanship. 

His next few sentences could be a manifesto : 

Theories of design computing demand attention to the skilful nature of accomplished symbolic manipulation. 
Explorations of generative structure obtain power from hand, eye and tools. They arise from personal knowledge, 
practice and commitment of the sort found in traditional handicrafts, now applied to symbolic systems.

Sennett shares the sentiment, preferring the Enlightenment to the Romantic view of craftsmanship, 
“when working with machines rather than fighting was the radical, emancipatory challenge.”21

14 There's a good animated film of this at http://denverartsygal.blogspot.com/2009/04/piet-mondrian-journey-through-
modern.html (retrieved July 13, 2011)

15 See http://en.wikipedia.org/wiki/Monad_(functional_programming  )   (retrieved July 13, 2011)
16 Sennet, Richard, 2008, The Craftsman, Penguin Books. Interestingly Sennett uses Linux programmers as one of his 

examples of dedicated crafter.
17 I'll normally use the term “crafter” because of the unfortunate gender bias of “craftsman”.
18 For example, Djikstra, Edsgar. W., The Fruits of Misunderstanding : 

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD854.html (retrieved July 13, 2011)
19 McCullough, Malcolm, 1996, Abstracting Craft : the practiced digital hand, MIT Press. This history of symbols is 

chapter 4.
20 I have a lot of interest in that side of the story too. But no space to explore it here.
21 William Morris also was not as Luddite as many of his followers. In “Art and its Producers”, 1881, he writes “I do 

not [believe] we should aim at abolishing all machinery; I would do some things with machinery which are now 
done by hand, and other things by hand which are now done by machinery; in short, we would be the masters of our 
machines and not their slaves, as we are now.” quoted http://pubs.socialistreviewindex.org.uk/sr196/nineham.htm, 
retrieved June 15, 2011

http://pubs.socialistreviewindex.org.uk/sr196/nineham.htm
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD854.html
http://en.wikipedia.org/wiki/Monad_(functional_programming)
http://en.wikipedia.org/wiki/Monad_(functional_programming
http://denverartsygal.blogspot.com/2009/04/piet-mondrian-journey-through-modern.html
http://denverartsygal.blogspot.com/2009/04/piet-mondrian-journey-through-modern.html


System Builders

So we have moved from a particular problem : the programmer as artist, to consider the 
programmer's material : code. Acknowledging that it has a variety of kinds of sign, including 
abstract representations, we noted that the metamorphosis that was part of Sennett's “material 
consciousness” included the invention of new abstractions leading to the “generative structures” 
that McCullough mentions. Generative structures are the material of much algorithmic art but 
McCullough calls for this to be tempered by human sensibilities and skills. Not just for the sake of 
individual artworks, but also perhaps for the humanist impulse that runs through the history of craft 
defined in opposition to industrial manufacture.22

McCullough, then, is another seeker of a sweet-spot on a spectrum between algorithmic unfolding 
and human agency.

We will now take a slight digression. Software is animated first by the machine and secondly by its 
users. Furthermore good software is typically developed incrementally, that is, developers accept 
feedback from the users to steer each new release. The programmer takes on a new responsibility of 
managing this dynamic as the software becomes a social object in people's lives. Phil Agre says that 
computers become a “trading zone” between different people and different disciplines.23 And the 
developer becomes orchestrator of their discourse.

This should remind us of some modern “systems thinking” in contemporary art. Clare Bishop offers 
us a useful overview of the character of Relational Aesthetics24.

“The implication is that this work inverses the goals of Greenbergian modernism. Rather than a discrete, portable, 
autonomous work of art that transcends its context, relational art is entirely beholden to the contingencies of its 
environment and audience. 

Moreover, this audience is envisaged as a community: rather than a one-to-one relationship betweens work of art 
and viewer, relational art sets up situations in which viewers are not just addressed as a collective, social entity, but 
are actually given the wherewithal to create a community, however temporary or utopian this may be. ”25

Relational artists actively recruit the viewers as participants in co-creation of the work. Rirkrit 
Tiravanija offers gallery visitors the use of a mockup of his apartment for social activities such as 
communal eating and partying and the work encompasses these activities. There are still constraints 
: participants can not sell the apartment and move on. Nor, I guess, extensively redecorate. So here 
is another in-between spot on a formal spectrum between participant freedom and artist 
determination.)

Bishop then proceeds to critique relational aesthetic analysis as prioritising the form of engagement 
without enquiring deeply into its content. What kind of social activity is engendered? Who, 
specifically, is invited to participate?  

“For Bourriaud, the structure is the subject matter—and in this he is far more formalist than he acknowledges. ”

While Bourriaud is reluctant to include overtly technological art in his relational aesthetics, this 
discussion does transfer across to the domain of interactive computer art. Personally I welcome the 
attention relational aestheticians pay to hedonistic concerns such as whether an engendered social 
situation is “comfortable” or “liveable” as similar concerns of comfort obtain for any computer 
interaction. Comfort is, perhaps, analogous to visual beauty, something that the artist may be wary 
of, but which in the long tradition of art (and even more in craft) remains an important 
consideration.

22 For more on this history, see The Craftsman, Chapter 3 : Machines
23 Agre, Phil, 2004, Internet Research : for and against, in Mia Consalvo, Nancy Baym, Jeremy Hunsinger, Klaus 

Bruhn Jensen, John Logie, Monica Murero, and Leslie Regan Shade, eds, Internet Research Annual, Volume 1: 
Selected Papers from the Association of Internet Researchers Conferences 2000-2002, New York: Peter Lang, 2004. 
Retrieved http://polaris.gseis.ucla.edu/pagre/research.html July 13, 2011 

24 Bourriaud, Nicolas, 2002, Relational Aesthetics, Les Presse Du Reel
25 Bishop, Clare. 2004, Antagonism and Relational Aesthetics, October

http://polaris.gseis.ucla.edu/pagre/research.html


Nevertheless Bishop's complaint seems a valid one if, as she points out, an artist as politically 
interesting as Santiago Sierra who recruits collaborators through the market and plays with 
exploitative relations is effectively ignored. A too narrow focus on both generative and interactive 
dynamics risks becoming obsessed with structure at the cost of other considerations. 

Interestingly, in another piece26, Bishop focuses on the “ethical turn” in art criticism that considers 
more politically engaged contemporary artists working with communities and groups. Here, it 
seems, critics have lost sight of aesthetic considerations in judging whether an artist is exploiting or 
otherwise abusing a collaborative community. Of most interest is the implication that there might be 
a trade-off between ethical correctness and artistic merit. An artist who gives up too much control of 
a work, to honour the moral imperative of letting the community speak, is also losing the capacity 
to make interesting art.

The same worry may be carried across into the realm of software art. And might, indeed, be behind 
the concerns we have noted at the beginning of this essay. Perhaps the problem with accepting 
“tools” as art-works is that their creator is seen as having already given up too much authorial voice 
to be considered interesting. And perhaps the reluctance of many digital artists to explore far from 
the algorithmic end of the spectrum is motivated by fear of this loss.

Similarly, what makes the author of a Photoshop plugin not an artist (or at least, not an interesting 
one) may be that she intends no reference to anything outside the pixels on the screen. Hers is a 
mere formal exercise. Fortunately painting has shown that the move via abstraction to the non-
figurative does not automatically imply a loss of external meaning and the same is true for the 
programmer-artist working with abstraction.

Conclusion

I have tried to cover a lot of ground quickly and as result can give only fragmentary suggestions. I 
could not, in any case, argue that the only role for the programmer-artist is either to engage with the 
tradition of craft or to explore the zones between complete user freedom and artist-determined 
algorithmic unfolding. All artists must follow their own way. 

But for me, these ideas fit together. I hope McCullough persuades that there is an opportunity for a 
digital / abstracted craft: one which makes powerful symbolic representations and abstract 
structures available for manipulation by the individual crafter. A reading of Sennett will reveal that 
“craft” is a complex of ideas and ideals (including political, ethical and aesthetic). Craft is not 
merely utilitarian knowhow or decorative tradition (though it is those too). 

Bishop warns us that both intoxicating formal innovation or committed ethical projects can 
nevertheless founder aesthetically. Interesting works will allow artist's authorial voice to be heard 
over both generative structure and social orchestration.

26 Bishop, Clare, 2006, The Social Turn, Collaboration and its Discontents, ArtForum



Bibliography

Agre, Phil, 2004, Internet Research : for and against, in Mia Consalvo, et al, eds, Internet Research 
Annual, Volume 1, Peter Lang, 2004.

Bishop, Clare. 2004, Antagonism and Relational Aesthetics, October

Bishop, Clare, 2006, The Social Turn, Collaboration and its Discontents, ArtForum

Bourriaud, Nicolas, 2002, Relational Aesthetics, Les Presse Du Reel

Fowler, Martin, 1999, Refactoring : Improving the Design of Existing Code, Addison-Wesley 
Professional

McCullough, Malcolm, 1996, Abstracting Craft : the practiced digital hand, MIT Press

Sennet, Richard, 2008, The Craftsman, Penguin Books

Tanaka-Ishii, Kumiko, 2010, The Semiotics of Programming, Cambridge

Winograd, T., and F. Flores. 1986. Understanding Computers and Cognition. Norwood, NJ: Ablex.


	Programmer as Artist
	Phil Jones
	Introduction
	The Programmer's Material
	System Builders
	Conclusion
	Bibliography


